联系我们 宁波材料所
姚松柏

姓  名:

姚松柏

所在单位:

中国科学院宁波材料技术与工程研究所

职  称:

副研究员

邮寄地址:

浙江省宁波市镇海区中官西路1219

办公电话:

0574-86688270

电子邮件:

yaosongbai@nimte.ac.cn

办公地点:

先进制造所M513

教育背景

2009/09-2013/07,武汉大学,工程力学专业,工学学士

2013/09-2018/07,北京大学,流体力学专业,理学博士

工作履历

2018/09-2021/08,德国斯图加特大学,燃烧技术研究所,博士后

    

 

学术兼职

Combustion and FlameFuelCombustion Science and TechnologyInternational Journal of Hydrogen EnergyPhysics of FluidsEnergy & FuelsSCI期刊审稿人

《推进技术》、《空天技术》和《火箭推进》等期刊青年编委

国际燃烧学会会员

研究领域

航空航天新型动力技术

数据驱动的燃烧计算方法

研究概况

入选中国科学院引才计划青年项目,宁波市领军人才。主要研究方向为航空航天新型动力技术和数据驱动的燃烧计算方法。作为项目负责人承担国家自然科学基金、宁波市自然科学基金、宁波市“甬江引才工程”青年创新人才等项目;作为项目主要成员参与国家自然科学基金“面向发动机的湍流燃烧基础研究”重大研究计划、原总装备部《***研究》、航天科技创新基金等项目。Combustion and FlameProceedings of the Combustion InstituteAIAA JournalAerospace Science and TechnologyShock WavesPhysics of FluidsApplied Thermal Engineering等燃烧学、航空航天、流体力学领域权威期刊发表SCI论文20余篇,共同撰写了国内首部关于连续(旋转)爆轰发动机的专著《连续爆轰发动机原理与技术》(科学出版社,2017);博士论文被评为2018年“北京大学优秀博士学位论文”,入选中国知网“青年学者优秀学术文库”,并以专著的形式正式出版。

学术成果

出版著作:

1. 王健平,姚松柏.《连续爆轰发动机原理与技术》.科学出版社. 2018

2. 姚松柏.《连续爆轰发动机进气、起爆和稳定过程的数值模拟研究》.中国知网青年学者优秀学术专著文库”. 2021

3. Wang J., Yao S., Han X. (2018) Continuous Detonation Engine Researches at Peking University. In: Li JM., Teo C., Khoo B., Wang JP., Wang C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham.

发表文章:

1. Yao, S., Tang, X., & Zhang, W. (2023). Adaptive operating mode switching process in rotating detonation engines. Acta Astronautica, 205, 239-246.

2. Yao, S., Guo, C., & Zhang, W. (2023). Effects of droplet evaporation on the flow field of hydrogen-enhanced rotating detonation engines with liquid kerosene. International Journal of Hydrogen Energy, 48(85), 33335-33345.

3. Yao, S., Tang, X., & Zhang, W. (2023). Structure of a heterogeneous two-phase rotating detonation wave with ethanol–hydrogen–air mixture. Physics of Fluids, 35(3), 031712.

4. Li, J., Lei, Y., *Yao, S., Yu, J., Li, J., & Zhang, W. (2023). Investigation of multi-stage evaporation and wave multiplicity of two-phase rotating detonation waves fueled by ethanol. Acta Astronautica, 213, 418-430.

5. Yu, J., *Yao, S., Li, J., Huang, Y., Guo, C., & *Zhang, W. (2023). Effects of inlet and secondary flow conditions on the flow field of rotating detonation engines with film cooling. International Journal of Hydrogen Energy, 48(24), 9082-9094.

6. Yao, S., Kronenburg, A., Shamooni, A., Stein, O. T., & Zhang, W. (2022). Gradient boosted decision trees for combustion chemistry integration. Applications in Energy and Combustion Science, 11.

7. Yao, S., Kronenburg, A., & Stein, O. T. (2022). Efficient modeling of the filtered density function in turbulent sprays using ensemble learning. Combustion and Flame, 237, 111722.

8. Yao, S., Wang, B., Kronenburg, A., & Stein, O. T. (2021). Conditional scalar dissipation rate modeling for turbulent spray flames using artificial neural networks. Proceedings of the Combustion Institute, 38(2), 3371-3378.

9. Yao, S., Wang, B., Kronenburg, A., & Stein, O. T. (2020). Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods. Physics of Fluids, 32(11), 115124.

10. Yao, S., & Wang, J. (2016). Multiple ignitions and the stability of rotating detonation waves. Applied Thermal Engineering, 108, 927-936.

11. Yao, S., Tang, X., Luan, M., & Wang, J. (2017). Numerical study of hollow rotating detonation engine with different fuel injection area ratios. Proceedings of the Combustion Institute, 36(2), 2649-2655.

12. Yao, S., Tang, X., & Wang, J. (2017). Numerical study of the propulsive performance of the hollow rotating detonation engine with a laval nozzle. International Journal of Turbo & Jet-Engines, 34(1), 49-54.

13. Yao, S., Han, X., Liu, Y., & Wang, J. (2017). Numerical study of rotating detonation engine with an array of injection holes. Shock Waves, 27(3), 467-476.

14. Yao, S., Tang, X., Wang, J., Shao, Y., & Zhou, R. (2017). Three-dimensional numerical study of flow particle paths in rotating detonation engine with a hollow combustor. Combustion Science and Technology, 189(6), 965-979.

15. Yao, S., Ma, Z., Zhang, S., Luan, M., & Wang, J. (2017). Reinitiation phenomenon in hydrogen-air rotating detonation engine. International Journal of Hydrogen Energy, 42(47), 28588-28598.

16. Yao, S., Liu, M., & Wang, J. (2015). Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine. Combustion Science and Technology, 187(12), 1867-1878.

17. Ma, J., Luan, M., Xia, Z., Wang, J., Zhang, S., Yao, S., & Wang, B. (2020). Recent progress, development trends, and consideration of continuous detonation engines. AIAA Journal, 58(12), 4976-5035.

18. Luan, M., Zhang, S., Xia, Z., Yao, S., & Wang, J. P. (2020). Analytical and numerical study of the expansion effect on the velocity deficit of rotating detonation waves. Combustion Theory and Modelling, 24(4), 761-774.

19. Ma, Z., Zhang, S., Luan, M., Yao, S., Xia, Z., & Wang, J. (2018). Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine. International Journal of Hydrogen Energy, 43(39), 18521-18529.

20. Zhang, S., Yao, S., Luan, M., Zhang, L., & Wang, J. (2018). Effects of injection conditions on the stability of rotating detonation waves. Shock Waves, 28(5), 1079-1087.

21. Liu, Y., Han, X., Yao, S., & Wang, J. (2016). A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. Shock waves, 26(6), 729-739.

22. Liu, Y., Wu, D., Yao, S., & Wang, J. (2015). Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combustion Science and Technology, 187(6), 843-856.

申请专利: