联系我们 宁波材料所
张咪娜
 

姓  名:

张咪娜

所在单位:

中国科学院宁波材料技术与工程研究所

职  称:

副研究员

邮寄地址:

浙江省宁波市镇海区中官西路1219号

办公电话:

0574-87608797

电子邮件:

zhangmina@nimte.ac.cn

办公地点:

科研楼ME405

教育背景

2014.09-2019.01  北京科技大学 博士

2011.09-2014.06  兰州理工大学 硕士

2007.09-2011.06  陕西科技大学 学士

工作履历

2023.01-至今    中国科学院宁波材料技术与工程研究所 副研究员

2022.04-2022.09  中国科学院宁波材料技术与工程研究所 助理研究员

2019.02-2022.04  中国科学院宁波材料技术与工程研究所 博士后

教    学

 

学术兼职

中国有色金属学会增材制造技术专业委员会委员

中国材料研究学会会员

宁波市机械工程学会会员

研究领域

增材制造技术、激光熔覆技术、多能场复合制造

研究概况

长期从事先进激光增/减材制造、多能场复合制造及表面工程技术方面的研究工作,主要研究方向涉及高熵合金/高温合金材料设计及其增材制造技术、耐磨涂层激光熔覆技术、多能场激光复合制造理论及系统集成等。作为项目/课题负责人,主持了国家自然科学基金青年基金项目、所长基金青年基金、浙江省博士后择优资助项目、宁波市重点研发计划和宁波市自然科学基金项目等;作为主要参与者,参与了装发共用技术、科技委快速转化等多项项目;在国内外重要学术期刊上发表论文35篇(其中SCI、EI收录30篇),其中第一作者/通讯作者发表论文15篇,申请发明专利6项,其中授权3项;参加国内/国际学术会议10次。中国有色金属学会增材制造技术专业委员会委员,宁波市机械工程学会会员;Optics and Laser Technology、Journal of Alloys and Compounds、Materials等多个科技类国际期刊特约审稿人。

学术成果

出版著作:

 

发表文章:

[1] M.N. Zhang*, X.L. Zhou, D.F. Wang, et al. Additive manufacturing of in-situ strengthened dual-phase AlCoCuFeNi high-entropy alloy by selective electron beam melting. Journal of Alloys and Compounds, 2022, 893: 162259.

[2] M.N. Zhang*, D.F. Wang, L.J. He, et al. Microstructure and elevated temperature wear behavior of laser-cladded AlCrFeMnNi high-entropy alloy coating. Optics and Laser Technology, 2022, 149: 107845.

[3] M.N. Zhang*, D.F. Wang, L.J. He, et al. Laser beam welding of AlCoCrFeNi2.1 eutectic high-entropy alloy. Materials Letters, 2022, 308:131137.

[4] M.N. Zhang, X.L. Zhou, D.F. Wang, et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment, Materials Science & Engineering A, 2019, 743: 773~784

[5] M.N. Zhang, X.L. Zhou, X.N. Yu, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding, Surface & Coatings Technology, 2017, 311: 321~329

[6] M.N. Zhang, X.L. Zhou, W.Z. Zhu, et al. Inuence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy, Metallurgical and Materials Transactions A, 2018, 49(4): 1313~1327

[7] M.N. Zhang, X.L. Zhou, J.H. Li, et al. Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy, Journal of Materials Engineering and Performance, 2017, 26: 3657~3665

[8] M.N. Zhang, W.T. Ouyang, J.K. Jiao, et al. AlCoCuFeNi High-entropy alloy coating fabricated by laser cladding with gas-atomized pre-alloy powders, Mater. Sci. Forum. 2021,993: 1148-1154.

[9] M.N. Zhang, X.L. Zhou, W.Z. Zhu, et al. Microstructure and mechanical behavior of alcocufeni high-entropy alloy fabricated by selective laser melting, Solid Freeform Fabrication 2017, 2017.8.5-2017.8.9

[10]  L.J. He, M.N. Zhang*, X.Y. Ye, et al. Microstructure and mechanical properties of in-situ dual ceramic phase synergistic strengthened CoCrMoNbTi(B4C)x high entropy alloy coating, Optics and Laser Technology, 2023.1.18, 16110917.

[11]  L.J. He, M.N. Zhang*, D.F. Wang, et al. A Microstructure and mechanical properties of in-situ dual ceramic phase synergistic strengthened CoCrMoNbTi(B4C)x high entropy alloy coating. Optics and Laser Technology, 2023, 161: 109172.

[12]  X.L. Zhou, L.J. He, M.N. Zhang*, et al. Effect of ceramic particles on microstructure and properties of CoCrMoNbTi high-entropy alloy coating fabricated by laser cladding. Optik, 2023, 285: 170987.

[13]  X.Y. Ye, M.N. Zhang*, D.F. Wang, et al. Carbon Nanotubes (CNTs) Reinforced CoCrMoNbTi0.4 Refractory High Entropy Alloy Fabricated via Laser Additive Manufacturing: Processing Optimization, Microstructure Transformation and Mechanical Properties, Crystals, 2022.11.21, 12(11), 1678.

[14]  X.Y. Ye, M.N. Zhang*, L.J. He, et al. Effect of laser remelting on microstructure and mechanical property of AlCoCuFeNi high entropy alloy fabricated by laser additive manufacturing. Proc. SPIE. 2021,119071U.

[15]  L.J. He, M.N. Zhang*, X.Y. Ye, et al. Microstructure and mechanical properties of in-situ MC-reinforced CoCrMoNbTi high-entropy alloy CoCrMoNbTi high-entropy alloy manufacturing. Proc. SPIE. 2021, 119072Q.

[16]  J.B. Wang, X.L. Zhou, J.H. Li, M.N. Zhang. Pre-deformation aging strengthening mechanism of Cu–15Ni–8Sn alloys prepared by laser additive manufacturing. Materials Science and Engineering: A, 2023, 878: 145196.

[17]  D.F. Wang, B.P. Zhang, C.C. Jia, M.N. Zhang, et al. Influence of carbide grain size and crystal characteristics on the microstructure and mechanical properties of HVOF-sprayed WC-CoCr coatings, International Journal of Refractory Metals and Hard Materials, 2017, 69: 138~152

[18]  何龙俊,张咪娜*,叶旭阳,等,机械合金化结合激光熔覆技术制备CoCrMoNbTi 难熔高熵合金, 粉末冶金技术. 2021, 已录用

[19]  周宇航, 张咪娜*, 陈晓晓, 等. 激光增材制造CoCrFeNi高熵合金激光抛光工艺研究. 中国激光, 2023, 50(20).

[20] 李文生,张咪娜,何玲,等. 新型减摩耐磨自敏监测复合涂层及其发光性能, 焊接学报, 2016, 37(4): 73~76

申请专利:

[1] 一种提高激光增材制造高熵合金成形件表面质量的方法,发明专利,202210851244.5

[2] 一种难熔高熵合金复合涂层及其制备方法和应用,发明专利,202210373670.2

[3] 一种难熔高熵合金复合材料及其制备方法,发明专利,202210161799.7

[4] 一种增材制造技术成形高熵合金的方法,发明专利,201710265570.7

[5] 一种高熔点高熵合金及其涂层制备方法,发明专利,201610840448.3

[6] 镍基荧光粒子功能指示复合涂层及其制备方法,发明专利,201310174464.X